Step of Proof: comp_id_l
12,41
postcript
pdf
Inference at
*
1
I
of proof for Lemma
comp
id
l
:
A
,
B
:Type,
f
:(
A
B
). (Id o
f
) =
f
latex
by ((Unfolds ``identity compose`` 0)
CollapseTHEN ((Auto_aux (first_nat 1:n) ((first_nat 1:n
C
),(first_nat 3:n)) (first_tok :t) inil_term)))
latex
C
1
:
C1:
1.
A
: Type
C1:
2.
B
: Type
C1:
3.
f
:
A
B
C1:
(
x
.(
x
.
x
)(
f
(
x
))) =
f
C
.
Definitions
t
T
,
Id
,
f
o
g
,
x
:
A
.
B
(
x
)
origin